
From Memory Safety to
Non-bypassable Security
Towards the dream of building unbreakable systems

Dr. Tao (Lenx) Wei
Chief Security Scientist, Baidu Inc.

Def Con China, 2018.5



Why Memory Safety matters?
While everybody talks about AI, Blockchain and so on



TensorFlow/Caffe/Torch Vulnerabilities

• There are many vulnerabilities in popular DL frameworks
• Consequences
• DoS Attacks
• Evasion attacks
• System Compromise

[*] Security Risks in Deep Learning Implementations, Qixue Xiao et al



Python NumPy Vulnerability vs Bigdata Platforms

• Escape Python sandboxes or compromise bigdata cloud services

[*] https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5



Smart Driving -
Could memory corruption kill a person?
• Unintentional acceleration by memory corruption

[*] https://www.eetimes.com/document.asp?doc_id=1319903



Pwn2Own Every Year



GeekPwn Every Year



Towards a dream of building unbreakable
systems
• Defense-in-depth is an effective strategy for enterprise security
• Vulnerabilities and exploits can be contained in multiple defenses

• But AI-based systems demand far better security
• No enough defense-in-depth for smart home devices
• Unwanted crash is an effective mitigation for browsers against exploits, but
unwanted crashes might be fatal in a self-driving system



Memory Safety
And unsafety



Memory safety

• Memory safety is the state of being protected from various software 
bugs and security vulnerabilities when dealing with memory access, 
such as buffer overflows and dangling pointers. [1]

• Spatial error [2]

• Dereferencing an out-of-bounds pointer

• Temporal error [2]

• Dereferencing a dangling pointer

[1] https://en.wikipedia.org/wiki/Memory_safety

[2] SoK: Eternal War in Memory, Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song, S&P 2013

https://en.wikipedia.org/wiki/Memory_safety


Memory safety in Programming Languages

• Most of modern high-level languages are designed with memory-safe
features.
• Rust
• Go
• Swift
• Javascript
• Python
• Java
• Ethereum Solidity
• ……



Memory Unsafety in “Memory-safe” Programming
Languages
• Java’s JVM
• Python’s C libs
• Swift’s Object-C runtime
• Javascript’ GC engine
• Go’s asm code
• Rust’s unsafe
• ……



Practical Memory Safety

• Pure memory safety is impractical for real world applications today
• Practical Memory Safety is layered & hybrid
• 3 principals for a hybrid memory-safe architecture

[Proposed in Baidu X-Lab Rust SGX SDK]
• Unsafe components must not taint safe components, especially for public 

APIs and data structures
• Unsafe components should be as small as possible and decoupled from safe 

components
• Unsafe components should be explicitly marked during deployment and ready 

to upgrade



Practical Memory-safe Projects by Baidu X-Lab

• Rust SGX SDK: Write Intel SGX applications in Rust
• MesaLock Linux: A Memory-Safe Linux Distribution

• MesaLink: A Memory-safe OpenSSL-compatible TLS Library

• And more to come soon



Re: Why Memory Safety is important

• Memory unsafe programs contain hidden control flow/data flow by
breaking memory boundaries
• The analysis cost becomes too high to be practical for real-world applications

• Memory safety makes control flows and data flows explicit
• Security audit is much easier

• Web/Android Java audit vs. Windows/Linux binary audit
• Classical formal verification has not fully made use of this feature yet



Non-bypassable Security
Paradigm (NbSP)
Towards formal verification of security properties of control flows



Is Memory safety Hackproof?

• Just one step further, but not bullet-proof
• Control-flow hijacking is still possible
• Android JavaScript Bridge
• Java Reflection abuse
• Struts2 OGNL vulnerabilities
• ……

• Data-flow vulnerabilities are still possible
• Sql Injections
• Solidity Integer overflow
• ……



Case study: Control-flow hijacking

• SIDEWINDER TARGETED ATTACK AGAINST ANDROID IN THE GOLDEN 
AGE OF AD LIBRARIES
• Yulong Zhang, Tao Wei, Blackhat 2014

• Use popular ad libs to intercept location information, opening the door to 
targeting specific areas (say, a CEO‘s office), and then take photos or record
videos remotely

• Android JavaScript-biding-over-http + Java reflection abuse

• No memory-unsafe vulnerability exploited

jsObj.getClass().forName(”java.lang.Runtime”) 

.getMethod(”getRuntime”,null).invoke(null,null).exec(cmd)



From Memory Safety To Formal Verification

• Machine-checkable formal verification is the only theoretically unbreakable
hackproof methodology today, the holy grail
• But the cost is too high to fully verify most of real world applications
• Layered formal verification is a promising direction

• Memory Safety
• Make control flows and data flows explicit, but
• Control-flow hijacking is still possible
• Data-flow vulnerabilities are still possible

• Non-bypassable Security Paradigm (NbSP)
• Based on memory safety
• Layered formal verification of security properties of control flow



Non-bypassable Security

• Introduced by MILS (Multiple Independent Levels of Security/Safety) 
• It requires that one component cannot use another communication 

path, including lower level mechanisms to bypass the security 
monitor
• Critical security checkpoints should be guaranteed to be non-

bypassable
• Authentication
• Authorization
• Auditing
• ……



Non-bypassable Security Paradigm
Control-flow Formal Verification for Memory-safe Applications

• We just need to make sure that all the paths between sources (e.g. input)
and sinks (e.g. database operations) MUST contain critical security
checkpoints
• Formal machine-checkable verifications

• Advantages
• Straight-forward for direct control flows
• Control flow graph is explicit, and we don’t need to dig hidden control flows

generated by memory unsafety

• Challenges
• Alias analysis: function pointers, reflections and so on
• Can not guarantee both soundness (no FN) and completeness (no FP) at the same

time



Indirect-bypassable challenges

Source 1

Source 2

Fn

Fn

Fn
Check-
points

Fn

Fn Fn

Fn

Sink 1

Sink 2

Sink 3Direct control transfer

Indirect control transfer



Use different types to block potential bypass

Source 1

Source 2

Fn

Fn

Fn
Check-
points

Fn

Fn Fn

Fn

Sink 1

Sink 2

Sink 3

X

X

X

Fn

Fn

Domain 1

Domain 2



Non-bypassable Security Paradigm
A Sound Solution (no FN)

• Machine-checkable formal verification
• Explore all the potential control flows in a
given memory-safe program, including direct
and indirect ones

• Reject if any path between a source and a sink
bypasses given checkpoints

• Software design and implementation
• Remove unnecessary direct bypasses, or add
missed checkpoints

• Use different function types to block
unwanted indirect bypasses



Non-bypassable Security Paradigm
Towards full formal verification of security checkpoints

• All the paths towards checkpoints are known
• Data-flow formal verification for all these paths is the next step,
against
• Sql Injections
• Integer overflow
• ……

• A practical layered solution of formal verification
• Depend on layered memory safety assumptions



Conclusions
Towards the dream of building unbreakable systems



From Memory Safety To Non-bypassable
Security Paradigm
• Memory Safety and software security is even more important along with

Cloud, AI, Blockchain, IoT, Smart driving ...
• Memory Safety makes control flows and data flows explicit

• The pre-condition of sound verification (no false negatives)

• Non-bypassable Security Paradigm (NbSP) guarantees that critical
checkpoints are non-bypassable, i.e. no missed/hidden paths
• A practical trade-off between design/implenmentation and analysis completeness
• Machine-checkable formal verification of security properties of control flows

• NbSP reduces attack surfaces significantly to critical checkpoints
• Authentication, authorization, auditing and so on
• NbSP makes it practical for further formal verification (data flows)



Welcome to join our open-source
memory-safe projects
• Rust SGX SDK: Write Intel SGX applications in Rust
• MesaLock Linux: A Memory-Safe Linux Distribution

• MesaLink: A Memory-safe OpenSSL-compatible TLS Library

• And more to come soon



Thanks!
Dr. Tao (Lenx) Wei
Chief Security Scientist, Baidu Inc.
Def Con China, 2018.5


