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Why Memory Safety matters?
While everybody talks about AI, Blockchain and so on



TensorFlow/Caffe/Torch Vulnerabilities

• There are many vulnerabilities in popular DL frameworks
• Consequences
• DoS Attacks
• Evasion attacks
• System Compromise

[*] Security Risks in Deep Learning Implementations, Qixue Xiao et al



Python NumPy Vulnerability vs Bigdata Platforms

• Escape Python sandboxes or compromise bigdata cloud services

[*] https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5



Smart Driving -
Could memory corruption kill a person?
• Unintentional acceleration by memory corruption

[*] https://www.eetimes.com/document.asp?doc_id=1319903
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Towards a dream of building unbreakable
systems
• Defense-in-depth is an effective strategy for enterprise security
• Vulnerabilities and exploits can be contained in multiple defenses

• But AI-based systems demand far better security
• No enough defense-in-depth for smart home devices
• Unwanted crash is an effective mitigation for browsers against exploits, but
unwanted crashes might be fatal in a self-driving system



Memory Safety
And unsafety



Memory safety

• Memory safety is the state of being protected from various software 
bugs and security vulnerabilities when dealing with memory access, 
such as buffer overflows and dangling pointers. [1]

• Spatial error [2]

• Dereferencing an out-of-bounds pointer

• Temporal error [2]

• Dereferencing a dangling pointer

[1] https://en.wikipedia.org/wiki/Memory_safety

[2] SoK: Eternal War in Memory, Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song, S&P 2013

https://en.wikipedia.org/wiki/Memory_safety


Memory safety in Programming Languages

• Most of modern high-level languages are designed with memory-safe
features.
• Rust
• Go
• Swift
• Javascript
• Python
• Java
• Ethereum Solidity
• ……



Memory Unsafety in “Memory-safe” Programming
Languages
• Java’s JVM
• Python’s C libs
• Swift’s Object-C runtime
• Javascript’ GC engine
• Go’s asm code
• Rust’s unsafe
• ……



Practical Memory Safety

• Pure memory safety is impractical for real world applications today
• Practical Memory Safety is layered & hybrid
• 3 principals for a hybrid memory-safe architecture

[Proposed in Baidu X-Lab Rust SGX SDK]
• Unsafe components must not taint safe components, especially for public 

APIs and data structures
• Unsafe components should be as small as possible and decoupled from safe 

components
• Unsafe components should be explicitly marked during deployment and ready 

to upgrade



Practical Memory-safe Projects by Baidu X-Lab

• Rust SGX SDK: Write Intel SGX applications in Rust
• MesaLock Linux: A Memory-Safe Linux Distribution

• MesaLink: A Memory-safe OpenSSL-compatible TLS Library

• And more to come soon



Re: Why Memory Safety is important

• Memory unsafe programs contain hidden control flow/data flow by
breaking memory boundaries
• The analysis cost becomes too high to be practical for real-world applications

• Memory safety makes control flows and data flows explicit
• Security audit is much easier

• Web/Android Java audit vs. Windows/Linux binary audit
• Classical formal verification has not fully made use of this feature yet



Non-bypassable Security
Paradigm (NbSP)
Towards formal verification of security properties of control flows



Is Memory safety Hackproof?

• Just one step further, but not bullet-proof
• Control-flow hijacking is still possible
• Android JavaScript Bridge
• Java Reflection abuse
• Struts2 OGNL vulnerabilities
• ……

• Data-flow vulnerabilities are still possible
• Sql Injections
• Solidity Integer overflow
• ……



Case study: Control-flow hijacking

• SIDEWINDER TARGETED ATTACK AGAINST ANDROID IN THE GOLDEN 
AGE OF AD LIBRARIES
• Yulong Zhang, Tao Wei, Blackhat 2014

• Use popular ad libs to intercept location information, opening the door to 
targeting specific areas (say, a CEO‘s office), and then take photos or record
videos remotely

• Android JavaScript-biding-over-http + Java reflection abuse

• No memory-unsafe vulnerability exploited

jsObj.getClass().forName(”java.lang.Runtime”) 

.getMethod(”getRuntime”,null).invoke(null,null).exec(cmd)



From Memory Safety To Formal Verification

• Machine-checkable formal verification is the only theoretically unbreakable
hackproof methodology today, the holy grail
• But the cost is too high to fully verify most of real world applications
• Layered formal verification is a promising direction

• Memory Safety
• Make control flows and data flows explicit, but
• Control-flow hijacking is still possible
• Data-flow vulnerabilities are still possible

• Non-bypassable Security Paradigm (NbSP)
• Based on memory safety
• Layered formal verification of security properties of control flow



Non-bypassable Security

• Introduced by MILS (Multiple Independent Levels of Security/Safety) 
• It requires that one component cannot use another communication 

path, including lower level mechanisms to bypass the security 
monitor
• Critical security checkpoints should be guaranteed to be non-

bypassable
• Authentication
• Authorization
• Auditing
• ……



Non-bypassable Security Paradigm
Control-flow Formal Verification for Memory-safe Applications

• We just need to make sure that all the paths between sources (e.g. input)
and sinks (e.g. database operations) MUST contain critical security
checkpoints
• Formal machine-checkable verifications

• Advantages
• Straight-forward for direct control flows
• Control flow graph is explicit, and we don’t need to dig hidden control flows

generated by memory unsafety

• Challenges
• Alias analysis: function pointers, reflections and so on
• Can not guarantee both soundness (no FN) and completeness (no FP) at the same

time



Indirect-bypassable challenges
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Use different types to block potential bypass
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Non-bypassable Security Paradigm
A Sound Solution (no FN)

• Machine-checkable formal verification
• Explore all the potential control flows in a
given memory-safe program, including direct
and indirect ones

• Reject if any path between a source and a sink
bypasses given checkpoints

• Software design and implementation
• Remove unnecessary direct bypasses, or add
missed checkpoints

• Use different function types to block
unwanted indirect bypasses



Non-bypassable Security Paradigm
Towards full formal verification of security checkpoints

• All the paths towards checkpoints are known
• Data-flow formal verification for all these paths is the next step,
against
• Sql Injections
• Integer overflow
• ……

• A practical layered solution of formal verification
• Depend on layered memory safety assumptions



Conclusions
Towards the dream of building unbreakable systems



From Memory Safety To Non-bypassable
Security Paradigm
• Memory Safety and software security is even more important along with

Cloud, AI, Blockchain, IoT, Smart driving ...
• Memory Safety makes control flows and data flows explicit

• The pre-condition of sound verification (no false negatives)

• Non-bypassable Security Paradigm (NbSP) guarantees that critical
checkpoints are non-bypassable, i.e. no missed/hidden paths
• A practical trade-off between design/implenmentation and analysis completeness
• Machine-checkable formal verification of security properties of control flows

• NbSP reduces attack surfaces significantly to critical checkpoints
• Authentication, authorization, auditing and so on
• NbSP makes it practical for further formal verification (data flows)



Welcome to join our open-source
memory-safe projects
• Rust SGX SDK: Write Intel SGX applications in Rust
• MesaLock Linux: A Memory-Safe Linux Distribution

• MesaLink: A Memory-safe OpenSSL-compatible TLS Library

• And more to come soon
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Dr. Tao (Lenx) Wei
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